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THE TIME-TEMPERATURE-TRANSFORMATION (TTT) STATE DIAGRAM
AND ITS ROLE IN DETERMINING STRUCTURE/PROPERTY RELATIONSHIPS

IN THERMOSETTING SYSTEMS

J. K. Gillham
Polymer Materials Program

Department .of Chemical Engineering
Princeton University

Princeton, New Jersey 08544

ABSTRACT

A generalized time-temperature-transformation (TTT) state diagram for

the thermosetting process is presented in which the four physical states

encountered (i.e., liquid, rubber, ungelled glass and gelled glass) are

related to the time and temperature of cure. Gelation and vitrification, as

a consequence of quenching morphological development and chemical conversion

respectively, are discussed with respect to control of material properties.

TIME-TEMPERATURE-TRANSFORMATION (TTT) STATE DIAGRAMS

Recent research (1-5) has indicated that a Time-Temperature-Transforma-

tion diagram (analogous to the TTT diagrams that have been employed for many

years in metallurgical processing) may be used to provide an intellectual

framework within which an understanding of the physical properties of thermo-

setting matrices may be achieved.

Figure la (3) shows a generalized TTT diagram obtained from isothermal

experiments for a typical thermosetting process that does not involve phase

separation. It displays the four distinct material states (liquid, elastomer,

ungelled glass and gelled glass) that are encountered during cure. Three

critical temperatures are also displayed on the diagram. These are Tgw, the
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maximum glass transition temperature of the fully cured system, gelTg, the

isothermal temperature at which gelation and vitrification occur simultane-

ously, and resinTgS the glass transition temperature of the reactants.

When a thermosetting material is cured isothermally above Tg., the

liquid gels to form an elastomer but it will not vitrify in the absence of

degradation. (Vitrification due to degradation is shown in Fig. 1). An

isothermal cure at an intermediate temperature between geiTg and Tg, will

cause the material first to gel and then to vitrify. If chemical reactions

are quenched by vitrification it follows that the glass transition tempera-

ture will then equal the temperature of cure and that such a material will

not be fully cured. At temperatures below gelT but above sin the vis-

cous curing liquid can vitrify simply by an increase of molecular weight and,

if chemical reactions are quenched by vitrification, the material need not

gel.

It is immediately apparent that structure-property relationships will

only be meaningful if the material is fully reacted. This is generally only

possible by curing above T

As indicated in Fig. I the time to vitrify passes through a minimum

between gelT and Tg,. This behavior reflects the competition between the

increased rate constant for reaction and the increasing chemical conversion

required to achieve vitrification as the temperature is increased. Also,

as indicated in Fig. 1, the time to vitrify passes through a maximum between

resinTg and gelTg* This behavior reflects the competition between the

temperature and time dependence of viscosity of the reacting system.

The cure TTT diagram of Fig. la can be extended (see Fig. lb) to

include two phase systems such as the rubber-modified thermosets used to
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improve the toughness of glassy state thermosets. The curing of such rubber-

modified systems may involve a change from an initially homogeneous solution

to a heterogeneous morphology with dispersed rubber. Figure lb includes the

locus of the visual onset of phase separation. Gelation may arrest the de-

velopment of the rubber second phase and therefore procedures which alter the

time and temperature to gelation can be used to control the material proper-

ties. Control of the time-temperature history of the material during cure is

a method of achieving the desired degree of phase separation, but a knowledge

of the TTT diagram is prerequisite for such a procedure. Since the nucleation

and growth of the rubber phase involves a balance between nucleus formation

and matter transport, the degree of phase separation achieved in an isothermal

process would be expected to show a maximum at a temperature between that for

which thermodynamics favors the solubility of the rubber in the matrix and

the resinTg of the matrix (6). Careful control of the cure temperature will also

permit the size and number of particles per unit volume of the dispersed rubber

phase to be modified and hence have a strong effect on the mechanical proper-

ties. Evidence has been presented (6,7) to show that improved material tough-

ness arises in rubber-modified systems in which part of the rubber is phase-

separated and part is trapped "in solution" in the matrix. The path taken on

the TTT diagram must therefore be chosen so as to balance the distribution of

the rubber between the two phases.

A continuous Heating Transformation (CHT) State Diagram (not shown)

which is analogous to the isothermally obtained TTT state diagram can be

obtained experimentally from a series of temperature scans at different rates

from below the glass transition temperature of the reactants (resjnTg) to

above T g. A typical scan for a homogeneous reactive system will reveal in
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sequence: relaxations in the glassy state, resinT , gelation, vitrification,
revi tri fi cati on
Oand (in the presence of some types of degradation) revitrification. After

vitrification on cure, in these scans, the glass transition temperature will

in principle equal the instantaneous scanning temperature until the rate of

chemical reaction is not sufficient to overcome the increased segmental

mobility of the developing network, at which temperature the material will

devitrify.

TORSIONAL BRAID ANALYSIS (TBA) -

A METHOD FOR CONSTRUCTING TTT & CH'.' STATE DIAGRAMS

An automated, free-hanging, freely decaying torsion pendulum has been

developed (1,8) which permits monitoring of the changes which occur through-

out cure by using a support (e.g. braid) impregnated with the reactive system

(TBA).

The TTT diagram (Fig. la) can be generated by measuring times to gel

and to vitrify at a series of isothermal temperatures. These transformation

times have been obtained using TBA from measurements of peaks in the mechani-

cal damping as a function of time which correspond to points of inflection

in the rigidity curves. Complementary CHT diagrams have been generated by

scanning the temperature range from below the glass transition temperature

of the reactant mixture, resinTg, to above Tg. at a series of constant heating

rates.

Details of procedures and results on structure-property relationships

of thermosetting systems are provided in recent publications (1-12).

An advantage of a freely suspended torsion pendulum specimen over

forced systems is its sensitivity which is the consequence of the free end.
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This has led to the revelation of fine details in the dynamic mechanical " ,','1

spectra which suggest, for example, that gelation is a multistep process- .(4,10,11)."

EFFECT OF EXTENT OF CURE ON MATERIAL BEHAVIOR ,l

In principle, cure at a temperature Tcure which is below Tg, will lea

to the glass transition temperature T, = Tcure. Post-cure above Tg, will

lead to Tg = Tg. An epoxy was cured according to the manufacturer's speci-

fications and yielded the thermomechanical TBA behavior "before post-cure"

shown in Fig. 2 (which lists experimental details and a summary of transitions).

It is apparent that the cure cycle was not sufficient to have Tg = Tcure.

Post-cure resulted in significant increase in Tg as well as change in the

viscoelastic behavior (e.g., the damping behavior) below the glass transition.

In particular, a small but significant decrease in the rigidity (i.e. modulus

if no dimensional changes occur on post-cure) occurred in the glassy state at,

for example OC (OmV, Fig. 2) in consequence of the post-cure. This is a

result of the non-equilibrium nature of the glassy state. Cooling at the

same rate through a glass transition leads to a supercooled liquid which is

further from equilibrium at, e.g. OC, the higher the T

Consider (Fig. 3) two specimens (1 and 2), one cured above T at

temperature 2Tcure the other cured below T at temperature lTcure Specimen

1 vitrified on cure to give a glass transition equal to the temperature of

cure. Specimen 2 reacted completely to give the maximum glass transition

temperature (Tg.). In the hypothetical absence of further reaction above tem-

perature 1Tcure the specific volume of the specimen cured at the lower temperature

will be higher at 2Tcure than that cured at 2Tcure (due to lower crosslink

density and more unreacted ends). The
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diagram, Fig. 3 (13), shows that cooling of the more completely reacted mater-

ial (at equal rates) results in a higher Tg and indicates how a higher specific
may

volumeAresult in the glassy state. The fundamental reason is that the mater-

ial with the higher Tg is further from equilibrium at e.g. room temperature (RT).

The higher free volume at RT of the more highly crosslinked material is

held responsible for its lower density and lower modulus at RT and greater

water absorption on immersion at RT (5,13).

EFFECT OF GELATION ON MATERIAL PROPERTIES IN TWO-PHASE SYSTEMS

The influence of gelation time on morphology is made evident by compar-

ison of the thermomechanical TBA behavior of a rubber-modified epoxy cured

without (Fig. 4a) and with (Fig. 4b) catalyst (12). The glass transition

temperature of the rubber is much more dominant in the sample cured without

catalyst. This suggests that the extent of phase separation depends on the

time available for phase separation which is limited by the process of gelation.

The higher glass transition temperature of the epoxy for the sample cured with

the longer gelation time also suggests more complete separation of the two

phases.
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FIGURE CAPTIONS

Fig. 1. Schematic Time-Temperature-Transformation (TTT) diagrams obtained
isothermally for the curing process. a) A thermosetting system
not involving phase separation. b) A thermosetting system in
which a rubber phase may separate during cure. The visual onset
of phase separation (the "cloud point") is indicated. (Ts is the
maximum temperature for phase separation to occur prior to gelation.)

Fig. 2. Thermomechanical behavior (TBA) of an epoxy after recommended cure
and after post-cure. Note the decreased rigidity at O°C (OmV) after
post-cure.

Fig. 3. Schematic: Specific volume versus temperature in the absence of
chemical reaction. Cured at temperature ITcure: dashed line.
Cured at temperature 2Tcure: solid line. Note the higher specific
volume at room temperature (RT) of the more highly reacted system.

Fig. 4. Thermomechanical behavior (TBA) of an epoxy-rubber system following
identical time-temperature cure paths. a) Zero parts per hundred
of catalyst. b) 0.5 parts per hundred of catalyst.
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